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Propagation in a Dielectric-Loaded Parallel
Plane Waveguide®

MARVIN COHNY

Summary—A theoretical analysis of wave propagation in a paral-
fel plane waveguide partially filled with a dielectric is performed.
This transmission line is a symmetrical three-region structure con-
sisting of two infinite parallel conducting planes with a dielectric
slab of rectangular cross section between and contacting each of the
planes. It has been found that TEM and TM modes cannot propagate
on this structure. This investigation is concerned with TE modes, al-
though hybrid modes can also propagate on this line. The lowest
order TE mode, which is the dominant mode, has no cutoff and hence
is inherently suited to extremely wide bandwidth operation. Equa~
tions have been presented for the field components, guide wave-
length, cutoff criteria, power handling capabilities, wall losses; and
dielectric losses as a function of the operating wavelength, waveguide
dimensions, and material constants. In the case of the dominant
mode, design curves covering a large range of wavelengths, dimen-
sions, and dielectric constants are presented. For a loosely bound
wave, the losses are comparable or less than those of conventional
rectangular waveguide and the power handling capacity is an order
of magnitude greater.

INTRODUCTION

HE structure to be analyzed consists of two in-
Tﬁnite parallel conducting planes with a dielectric

slab of rectangular cross section between; and con-
tacting each of the planes (see Fig. 1). It will be shown
that this line is capable of extremely broad-band and
high-power operation and that its losses are comparable
to that of conventional rectangular waveguide. It has
the disadvantages of being a partially open structure
and being larger than conventional guide. In the milli-
meter wavelength region the last property may, how-
ever, be an advantage.
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Fig. 1—Cross section of the paralle]l plane waveguide partially filled

with a dielectric. The positive 2-direction is out of the paper.
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The propagation of TE modes on this line has been
theoretically investigated. Expressions are presented for
the field intensities, guide wavelength, cutoff conditions,
power handling capabilities, wall losses, and dielectric
losses as a function of the operating wavelength, wave-
guide dimensions, and material constants. In the case of
the lowest order TE mode, which is the dominant mode
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of this line, many of these quantities have been com-
puted and plotted to serve as design curves.

It can be shown that both TEM and TM waves can-
not be propagated on this line. The propagation of hy-
brid modes on this type of line has been analyzed by
Tischer,"? and in an independent investigation, Moore
and Beam?® have studied both TE and hybrid modes.
The report of the latter authors, however, has not been
referenced by the principal indexes in the field. The
latter paper contains errors in the equations concerning
dielectric and metallic losses and in the curve of metallic
attenuation. One of the curves showing the cutoff con-
dition for the hybrid modes is also in error.?

In a recent paper, Vartanian, Ayres, and Helgesson®
have shown that improved bandwidth and power
handling capabilities can be obtained with a related
structure consisting of a dielectric slab centered in a
rectangular waveguide. ~

Interest has been aroused in both this structure and a
coaxial line partially filled with a dielectric, which is
similar to a parallel plane line wrapped in a circle, be-
cause they have properties suitable for use in a non-
reciprocal ferrite device.b~%

FieLp CompONENTS oF THE TE MODES

Since the derivation of the field components is avail-
able in the paper by Moore and Beam,? it will not be re-
peated here. A report® has been published which gives
a detailed derivation of the TE mode field components

and includes an extensive discussion of the next higher
order TE mode.
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A cross section of the transmission line to be analyzed
and the coordinate system used are shown in Fig. 1.
The symmetry of the transmission line causes all solu-
tions to fall into two groups, even and odd modes.
These modes are defined by

Eyo(x) = Eyo(—x) and Ey(x) = — Eu(—=x), (1)

where the subscripts e and o refer to the even and odd
modes, respectively. The expressions for the field com-
ponents of the even and odd order TE modes in each
of the three regions are listed below. The factor e/(wi=#2),
which is common to each of these expressions, has been
eliminated in the interest of brevity.

Region 1, even modes

H,o = Ad,— cos k1% (2a)
le
H, = jA,sin ke (2b)
whlo
Eje= — A, — cos k1o
" e (2¢)
Region 2, even modes
8 .
Hiupo = Ae—— (sin ky.a)ebzelot) (3a)
2e
H.2o = — jA(sin ky.a)ekretotn (3b)
Wiy .
Epe = — A, — (sin ky,a)erzelots) (3c)
2e
Region 3, even modes
8 . o .
Hu. = A, — (sin ky.a)ebeete) (4a)
2¢
H.;, = jA(sin ky.a)eb2e@ (4b)
Wiy,
Ep. = — 4. (sin kya)ebzelemo (4¢)
Region 1, odd modes
H,, =74, sin k% (5a)
lo
H,1, = Ag cos kix (5b)
O
Eyio = —jd, — sin ki (5¢)
lo
Region 2, odd modes
Hgo = jA, (cos ky,a)ereo et (6a)
20
H.2 = Ag(cos ky,a)ebzoleta) (6b)
Who
Eys = (cos kyoa)eholets) (6¢)

.__'Ao
T8

%o
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Region 3, odd modes
. B '
Hz3o = — ];10 _— (COS kloa)ekzo(a——g,) (7&)
20
H.s, = Ao(cos kyea)etwle=s (7h)
. WHo

Eyg" = ]AO — (COS klga)gk%(a—x) <7C)

20

A, and A, are arbitrary constants.

The inner and outer transverse distribution constants
(k1 and ky) are related to the propagation constant (),
frequency (w), and properties of the medium (u and )
by the following equations:

182 = - k12 -+ w2u051 (8)
B2 = ko + wuees. (9)
In order to match boundary conditions at the air-dielec-

tric interfaces (x = +a), the following conditional equa-
tions must be satisfied.

er = kle tan klea (10)

where (ki.a) must be between o and w/2, v and 37/2,

etc.
koo = (11)

where (ki,6) must be between 7/2 and 7, 37/2 and 27,
etc.

— ki, cot kroa

SoLuTION OF THE CONDITIONAL EQUATION
AND MoDE DESIGNATION

Since the propagation constant must be the same in
all regions, the following equations must be satisfied:

(12)
(13)

9 9
kla‘ — WloEl = — kﬁe2 - w2,u0€2

— 2 2
k12 — wluoer = — ka? — wuges.

By substituting (10) into (12) (eliminating ks.), and
substituting (11) into (13) (eliminating ks,), the follow-
ing equations result.

2a\? k10 2
7r2<>\> (K1 — Kj) = [—~ -—:' , even modes  (14)

o CoS kiea

2a\? klua/ 2
. <)T> (K1 — Ky) = I:;n——a} , odd modes  (15)
0, o

ks

where Ki=¢/e, Ky=¢/€, N, ={ree-space wavelength.
Since (14) and (15) are transcendental, graphical tech-
niques have been used to obtain their roots. If the
quantities

kle(l 2 kma 2
y= || and = |0
coSs ki.a sin kyoa.
are plotted as functions of (ki) and (kwa) over their
respective restricted intervals, the curves of Fig. 2 will
result. Both sets of curves can be plotted on the same

graph since their intervals of applicability are con-
tiguous and interlaced, but do not overlap. Each curve
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corresponds to a different TE mode. Values of (2a/\,)
and (K;— Ks) can be selected and a horizontal line corre-
sponding to the equation

2a\ 2
y =7’ ~ (K1 — Ky)
0

can be drawn across the family of curves of Fig. 2. The
values of (k@) and (ki) at the intersections of the
horizontal line and the curves are the roots of (14) and

(15).
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Fig. 2—Graphical technique for obtaining the roots of the conditional
equation for the even and odd order TE modes.

It should be noted from Fig. 2 that the lowest order
even mode (0 <ki.e<w/2) can exist down to zero fre-
quency. It is the dominant mode of this structure and
will be designated the TE;, mode. Successively higher
modes will be designated TE;, TE;, etc. The mth
mode is designated TE,,. The even modes correspond
to m being an odd integer, and vice versa. The zero
shows that there is no variation of the fields in the ¥
direction. Egs. (14) and (15) show that in order for the
TE.., mode to propagate, the following inequality must
be satisfied.

2¢ m—1

— > = AK = K; — K,.
Ae  24/AK

(16)

The procedure for obtaining the roots of (14) and
(15), as shown in Fig. 2, was repeated for many values
of (2a/N,) and AK. The results for the dominant mode
are shown in Fig. 3. The cutoff loci for various higher
order TE modes are shown on this and many succeeding
families of curves. Using the results of Fig. 3 and (10),
values of (ks.¢), the transverse distribution parameter
for the outer regions, can be calculated as a function of
(2a/\,) and AK. The results of this calculation for the
dominant mode are presented in Fig. 4.

The values of (ki.a) and (ks.a) are sufficient to enable
one to plot the transverse field distributions. Sample
plots of the field configuration, as well as graphs of the
field magnitudes for the dominant mode (TEy,) and the
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Fig. 3—Curves of the inner transverse distribution parameter (ki.z)
of the dominant mode as a function of the normalized slab width
(2a/7,), and the difference of the dielectric constants (AK).
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Fig. 4—Curves of the outer transverse distribution parameter (k2.0)
of the dominant mode as a function of the normalized slab width
(2a/X\,), and the difference of the dielectric constants (AK).

lowest order odd mode (TE,), are shown in Fig. 5 and
Fig. 6. The amount of sinusoidal or cosinusoidal varia-
tion in Region 1 is determined by (ki.2), and the rate
of exponential decay in Regions 2 and 3 is determined
by ks., which is found from (k:.a).

It should be noted from (2) through (7) and Fig. 5
and Fig. 6, that none of the field components is a func-
tion of y. Guide wavelength, cutoff wavelength, and field
extent of the TE modes are, therefore, independent of
the distance b between the two conducting planes. This
distance can be varied to suppress the hybrid modes,
which are a function of ¥, and yet not cause cutoff of
the TE modes. The cutoff criterion for the hybrid modes
has been derived by Moore and Beam.? Their formula
for determining the critical distance between the con-
ducting planes, b., which suppresses all hybrid modes, is
re-expressed below.

"1+ tan? k.o

P ‘/1 + K1 tan klea

(17)
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Fig. 5—(a) Cross-sectional view, and (b) top view of the field con-
figuration of the dominant mode (TE,); (¢) magmtude of the field
components of this mode.
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Fig. 6—~(a) Cross-sectional view, and (b) top view of the field con-
figuration of the lowest order antisymmetric mode (TE2); (¢)
magnitude of the field components of this mode.
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This relationship is presented graphically in Fig. 7.
Since TEM and TM modes cannot propagate on this
line, only TE modes can exist if b<b,. If, in addition,
the following inequality is satisfied, single mode (TE,,)
operation is assured.

2a 1

(18)

—_—< .
Ao 24/AK

( b?/,\o )- (DIMENSIONLESS RATIO)
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Fig. 7—Cutoff condition for the hybrid modes as a function of the

normalized slab width (2a/),) and dielectric constant (X1).

If a conducting wall is placed at the x =0 plane, all
of the even TE modes will be suppressed, but the odd
modes will be unaffected. The dominant mode of the
resulting trough line (half of the original line) will be
the TE,, mode.

The ratio of the cutoff wavelengths of the TE,, and
the TEy, mode is 3:1. This modified structure, there-
fore, also has an inherent bandwidth advantage over
conventional rectangular waveguide. Although it does
not have the bandwidth capability of the TE;, mode on
the original line, it has the advantages of being a smaller
guide and being closed on three sides. The trough line
geometry is appropriate for the design of ferrite devices
employing transverse magnetization.

GUiDE WAVELENGTH

Making use of (8) and the fact that \,=2x/8, it is
easily shown that

G)
Py
)\g Ao

o 1/ ( )Kl—(kua)Z

The corresponding expression for the odd modes is the
same as (19) except that (ki,a) replaces (ki.@). For the
case where the outer regions are air or vacuum (Ky=1),
No/No has been calculated for the TE;, and TE,, modes.

(19)

; even modes.
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The results of these calculations are shown in Fig. 8 and
Fig. 9. For small values of (2a/N\,), (\;/\,) approaches
unity; and for large values of (2a/\,), (\;/\,) approaches
1/+/K;. This result is in agreement with the transverse
field distribution picture of this mode, since small values
of (2a/\,) correspond to most of the energy being propa-
gated in regions 2 and 3, and large values of (2a/\,) cor-
respond to most of the energy confined in the dielectric
slab. The cutoff loci for higher order TE modes are
shown as dashed curves superimposed on the A\;/\,
curves.

PowER HANDLING CAPABILITIES

Since E,=H,=0, and the product E,H, is an even
function of x, the axial power flow is

y==b a
—_ Real f [ f E“Hm*dx
y=0 T=0

+ f Engzg*dx:’dy. (20)

P, =

Ii the proper expressions from (2) through (7) are in-
serted in (20), and the indicated integration is per-
formed, the following formulas for the power flow of the

even and odd modes result:
2a\?2
/‘/ﬂ'2K1 <—‘> — (klga)2
Ao

“wo {24
Po=4,)2nba 1/_(_#)
€0 \ Ao 2(k1ca)?
ot ki,
-[1 SR a} (21)
klea
2a
. /‘/TZKl <A> — (k1oa)2
| o f2a Mo
P, = | 4,|*wba V—<—>
€\ Ao 2(k1.0)?
tan klod
-[1 - ————:} (22)
kloa

For the dominant mode, the maximum electric field
is located at x=0. As a safety factor, the breakdown
power level Py will be calculated assuming that the
maximum electric field Esg, which can exist at x=0, is
the breakdown field of air (despite the fact that a di-
electric material occupies this central region). Eu; will be
taken as 15,000 volts per centimeter (a safety factor of
approximately 2) to conform to standard waveguide cal-
culations. From (2¢) it is seen that at x=o0

kle

Wlo

| 4.] | Eoaj . (23)
If (23) is substituted into (21), the following equation
is obtained for the breakdown power level of the domi-

nant mode,
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Fig. 8—Curves of the normalized waveguide wavelength (\;/\o) of
the dominant mode, for the case where the outer regions are air or
vacuum, as a function of the normalized slab width (2a/A,) and
dielectric constant (Ki).
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Fig. 9—Curves of the normalized waveguide wavelength (A\;/\,) of
the TEz, mode, for the case where the outer regions are air or
vacuum, as a function of the normalized slab width (2e/),) and
dielectric constant (Ki).

Py 9.51'108[

cot k]ga]
ab (2a/X,)

kled

/g (2 2—(klea)2. (24)
Ao

For the case where Ky;=1, this function has been calcu-
lated for many values of (2a/X\,) and K;. The resulting
family of curves is shown in Fig. 10. These curves show
that for very small values of (2a/\,), which corresponds
to a very loosely bound wave, P;; becomes very large.
Any practical transmission line will have to be of finite
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Fig. 10—Curves of the power handling capability (Pseab) as a func-
tion of the normalized slab width (2a/)\,) and dielectric constant
(K1). These curves are for the dominant mode and the case where
the outer regions are air or vacuum,

extent in the x-direction, and hence there is a practical
lower bound on (2a/X\,) and an upper bound on the
power handling capability. The improved power han-
dling capabilities of this line are a result of itslarger size
and resultant reduced power density. The advantage is
that single mode operation can be assured even with the
large waveguide. The curves of Fig. 10 should provide
an accurate measure of the power handling capacity if
the width of the guide (in the x-direction) is sufficiently
large so that nearly all of the power is propagated in the
region between the two conducting planes.

TRANSMISSION LLOSSES

Thus far, it has been assumed that the two parallel
conducting planes had infinite conductivity and that
the dielectric material had zero conductivity. This ideal
line, of course, will have no losses. Practical transmis-
sion line conductors will have large but finite conduc-
tivity and the dielectric will have small but finite con-
ductivity. Approximate attenuation formulas will be de-
rived for these low loss materials. Since these losses are
assumed to be small, separate equations can be derived
for the wall loss and the dielectric loss.

The wall loss per unit length in the z-direction P, is
given by:

1 '3
P, = 2-~2- Rsf | H,|2dx,

—0

(25)

where R, = ~/wu./20»=surface resistance of the metal
walls,

| H,|

i

(| Hel? + | Ho |9

magnitude of the magnetic field at the walls

i

Q
s
i

conductivity of the metal walls.
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The extra factor of two in (25) accounts for the two con-
ducting walls. The attenuation per unit length due to
the wall loss is '

— Pw
P,

Oy

(26)

The proper expressions for the magnetic field should be
substituted into (25), and the integration performed. If
the resulting expression and either (21) or (22) are then
substituted in (26), the following equations for the at-
tenuation due to the wall loss for the even and odd TE
modes result.

. .0291
awgb\/)\o = —
T
[on ) e
<0 1+ cot k.
) 0 1@ + 1e@ @7
<2a>/‘/ - <20>2 oo
- Y~ (Brna
VT '
A .0291
Wy o = g
Vo
2a\?
l:7r2K1 (;) (/eloa — tan kloa) -+ (klga)2 tan kh)a]
: . (28)

. 2a 2a\?
*—> (ke — tan ki,a) T2 Ky (*) — (ky,0)?
Ao Ao

For the case of the dominant mode, and for Ks=1, (27)
has been plotted in Fig. 11 for a range of (2a/\,)
and many values of K. The conductivity of copper
(0, =15.80X 107 mhos per meter) was used in this com-
putation. The curves of Fig. 11 can be used for other
wall materials if the values of attenuation obtained from
them are multiplied by the square root of the relative
resistance of the substituted material.

The equation for the dielectric attenuation is derived
for the case where Regions 2 and 3 are air or vacuum,
and hence the dielectric loss all occurs in Region 1. The
dielectric loss per unit length in the z-direction Py is

given by
oq b +a
Py = %f f l Eul‘2dxdy:
2 y=0 F==—al

where 04 =we, Ki¢ps =conductivity of the dielectric mate-
rial,
¢a=loss tangent of the dielectric material.
The attenuation per unit length due to the dielectric
loss is

(29)

Py

= p (30)

[27]

The proper expressions for the electric field, (2¢) or (5¢),
should be inserted in (29) and the integral evaluated to
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Fig. 11—Attenuation (in nepers per meter) due to the loss in the walls
as a function of the normalized slab width (2¢/X,) and dielectric
constant (Ki). These curves are for the dominant mode and the
case where the outer regions are air or vacuum and the wall
material is copper (o =>5.80X107 mhos per meter).

obtain equations for the dielectric power loss of the even
and odd TE modes. The resulting expressions and either
(21) or (22) are substituted into (30) to obtain the fol-
lowing formulas for the attenuation due to the dielectric

loss.
'K <2a>
7 K1¢a }\O

/‘/r2K1 (%)2 — (k1.0)?

0
[klea + sin ky.a cos klea:l
kled + cot kled

- <2a>
7Kg ~
2a\ 2
/‘/1r2K1 <K~> — (ky,0)?

0,
[kloa — sin ki.a COS klga}

ko — tan kia

ade>\0 =

(31)

Qdohs =

(32)

Fig. 12 is a plot of agh, as a function of (2a/XA,) and
many values of K for the dominant mode. These cal-
culated results were plotted for a value of dielectric loss
tangent ¢3=0.001. These curves can be used for other
values of ¢4 if the values of aq obtained are divided by
0.001 and multiplied by the loss tangent of the dielec-
tric used.

Discussion

The parallel plane waveguide partially filled with a
dielectric can support a class of TE modes, whose field
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Fig. 12—Attenuation (in nepers per meter) due to the dielectric loss
as a function of the normalized slab width (2a/),) and dielectric
constant (Ki). These curves are for the dominant ynode and the
case where the outer regions are air or vacuum. The loss tangent
(¢4) equals 0.001.

structure is similar to the TE,, modes of rectangular
waveguide. These TE modes display either even or odd
symmetry about the geometrical plane of symmetry
{x=0). It is not possible to support TEM or TM waves
on this structure. It has been previously shown that
hybrid modes can also propagate on this line.' A
sufficiently small, yet convenient, value for the distance
between the conducting planes can be found which will
suppress the hybrid modes and not affect the TE modes.

The dominant mode of this line (TEy) has no cutoff
frequency, and hence it is inherently capable of very
wide bandwidth operation. For a loosely bound wave,
the losses are comparable to those of conventional rec-
tangular waveguide, and the power handling capacity is
an order of magnitude greater. In order to obtain the
advantages of a loosely bound wave on this line, the
structure must be substantially larger than rectangular
waveguide. This line may, therefore, offer its greatest
utility at millimeter wavelengths, where its size is still
convenient. The availability of low loss, low dielectric
constant materials allows the use of a reasonably wide
dielectric center strip. The dielectric strip will, therefore,
be mechanically self-supporting, while retaining the ad-
vantages of a loosely bound wave structure even at
millimeter wavelengths. In the case of the dielectric
loaded trough guide propagating the TEs mode, thin
layers of higher dielectric constant materials can be sup-
ported alongside the vertical conducting wall.
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