
202 IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

Propagation in a Dielectric~Loaded Parallel

Plane Waveguide*
MARVIN COHNt

S’ummary-A theoretical analysis of wave propagation in a paral-

lel plane waveguide partially filled with a dielectric is performed.

This transmission line is a symmetrical three-region structure con-

sisting of two infinite parallel conducting planes with a dielectric
slab of rectangular cross section between and contacting each of the

planes. It has been found that TEM and TM modes cannot propagate

on this structure. This investigation is concerned with TE modes, al-
though hybrid modes can also propagate on this line. The lowest
order TE mode, which is the dominant mode, has no cutoff and hence

is inherently suited to extremely wide bandwidth operation. Equa-

tions have been presented for the field components, guide wave-

length, cutoff criteria, power handling capabilities, wall losses, and
dielectric losses as a function of the operating wavelength, waveguide

dimensions, and material constants. In the case of the dominant

mode, design curves covering a large range of wavelengths, dimen-

sions, and dielectric constants are presented. For a loosely bound
wave, the losses are comparable or less than those of conventional

rectangular waveguide and the power handling capacity is an order
of magnitude greater.

INTRODUCTION

, HE structure to be analyzed consists of two in-

T
finite parallel conducting planes with a dielectric

slab of rectangular cross section between, and con-

tacting each of the planes (see Fig. 1). It will be shown

that this line is capable of extremely broad-band and

high-power operation and that its losses are comparable

to that of conventional rectangular waveguide. It has

the disadvantages of being a partially open structure

and being larger than conventional guide. In the milli-

meter wavelength region the last property may, how-

ever, be an advantage.

I
~.. * x=a

y.b

~2 ! Po

y=o x--

Fig. l—Cross section of the parallel plane waveguide partially filled
with a dielectric. The positive z-direction is out of the paper.

The propagation of TE modes on this line has been

theoretically investigated. Expressions are presented for

the field intensities, guide wavelength, cutoff conditions,

power handling capabilities, wall losses, and dielectric

losses as a function of the operating wavelength, wave-

guide dimensions, and material constants. In the case of

the lowest order TE mode, which is the dominant mode
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of this line, many of these quantities have been comp-

uted and plotted to serve as design curves.

It can be shown that both TEM and TM waves can-

not be propagated on this line. The propagation of hy-

brid modes on this type of line has been analyzed by

Tischer, 1‘2 and in an independent investigation, Moore

and Beam3 have studied both TE and hybrid modes.

The report of the latter authors, however, has not been

referenced by the principal indexes in the field. The

latter paper contains errors in the equations concerning,

dielectric and metallic losses and in the curve of metallic

attenuation. One of the curves showing the cutoff con-

dition for the hybrid modes is also in error.4

In a recent paper, Vartanian, Ayres, and Helgesson5

have shown that improved bandwidth and power

hanciling capabilities can be obtained with a related

structure consisting of a dielectric slab centered in a

rectangular waveguide.

Interest has been aroused in both this structure and a

coaxial line partially filled with a dielectric, which is

similar to a parallel plane line wrapped in a circle, be-

cause they have properties suitable for use in a non-

reciprocal ferrite device.e–s

FIELD COMPONENTS OF THE TE MODES

Since the derivation of the field components is avail-

able in the paper by Moore and Beam,3 it will not be re-

peated here. A reportg has been published which gives

a detailed derivation of the TE mode field components

and includes all extensive discussion of the next higher

order TE mode.

I F. J. Tischer, “Microwellenleitung mi~ geringen Verlusten, ”
(Waveguides with small losses), Arch. elekt. Ubertragung, vol. 7. pp.
592-5’96; December, 19.53.

2 F. J. Tischer, “The H-guide, a waveguide for microwaves, ” 19S6
IRE CONVE~TIO~ RECORD, pt. 5, pp. 44-47.

8 R. A. Moore and R. E. Beam, “A duo-dielectric parallel plane
waveguide, ” Pro.. iVBC, vol. l?, pp. 689–705; April, 1957.

1 During recent communications with R. A. Moore, he has verified
the existence of the cited errors.

s P. H. Vartanian, W. P. Ayres, and A. L. Helgesson, ‘Propaga-
tion in dielectric slab-foaded rectangular waveguide, ” IRE TRANS.
ON MICROWAVE THEORY AND TECHISIOUES, Vol. MTT-6, PP. 21 ~–
222; April, 1958.

.-. .

GB. J. Duncan, L. Swern, and K Tomiyasu, ‘(Microwave mag-
netic field in dielectric-loaded coaxial line, ” PROC. IRE, vol. 46,
pp. 500-502; February, 1958. This qualitative analysis, however,
yields an erroneous p~cture of the field configuration in dielectric-
loaded parallel pIane hne.

7 M. Cohn, “Parallel plane waveguide partially filled with a di-
electric, ” PROC. IRE, vol. 46, pp. 1952-1953; December, 1958.

g K. J. Button, “Theory of non-reciprocal ferrite phase shifters in
dielectric-loaded coaxial line, ” Y. A/@. Phys., vol. 29, pp. 998-1000:
June, 1958.

s M. Cohn, “Parallel Plane Waveguide Partially Filled with a
Dielectric, ” The Johns Hopkins Univ., Radiation Lab., Baltimore.
Md., Tech. Rep. No. AF-56; November, 1958.
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A cross section of the transmission line to be analyzed Region 3, odd modes

and the coordinate system used are shown in Fig. 1.

The symmetry of the transmission line causes all solu- HZ30 = – j.40 ~ (cos k~Oa)e~~Oca--’) (7a)
tions to fall into two groups, even and odd modes.

These modes are defined by H,30 = A O(cos klOa)e~ZOf”–’J (7b)

where the subscripts e and o refer to the even and odd
/22.

modes, respectively. The expressions for the field com- .4. and .4. are arbitrary constants.

ponents of the even and odd order TE modes in each The inner and outer transverse distribution constants

of the three regions are listed below. The factor e~fm‘–~’), (kl and k,) are related to the propagation constant (@),

which is common to each of these expressions, has been frequency (co), and properties of the medium (p andl e)

eliminated in the interest of brevity.

Region 1, even modes

Region 2, even modes

Q3. = — A ~ ~ (sin klea)e~z.(a–l)
k~,

Region 1, odd modes

Eulo = – jA~ ~ sin kl.:v

Region 2, odd modes

H.z. = jA. $ (COS kl.a)ek’”(”+’)

HZZO = A O(cos kloa)e~z” (a+’)

EVaO = – jA ~ ; (cos klOa) e~lo (~+~)

20

(2a)

(2b)

(2C)

(3a)

(3b)

(3C)

(4aj

(4b)

(4C)

(5a)

(5b)

(SC)

(6a)

(6b)

(6c)

by the following equations:

@ = – klz + (&o,l (8)

f12 = kZ2 + W2pOE2. (9)

In order to match boundary conditions at the air-dielec-

tric interfaces (x= + a), the following conditional equa-

tions must be satisfied.

kz. = kl, tan kl,a (lo)

where (kl,a) must be between o and 7r/2, n- and 3~/2,

etc.

k~o = – klo cot kloa (11)

where (kloa) must be between 7r/2 and r, 31r/2 and 27r,

etc.

SOLUTION OF THE CONDITIONAL EQtJA.TION

AND MODE DESIGNATION

Since the propagation constant must be the same in

all regions, the following equations must be satisfied:

By substituting (10) into (12) (eliminating kl,), and

substituting (11) into (13) (eliminating kJ, the follow-

ing equations result.

()2a 2
7r~ — [1(K, – KJ = ;f~az ‘, even modes (14)

Ao

2a 2

()

kl.a 2
r’ ~ (K, – K,) = [1 ,odd modes (15)

sin kl. a

where K,= el/e~, K,= ez/e~, A.= free-space wavelength.

Since (14) and (15) are transcendental, graphical tech-

niques have been used to obtain their roots. If the

quantities

are plotted as functions of (kl,a) and (kwu) over their

respective restricted intervals, the curves (of Fig. 2 will

result. Both sets of curves can be plotted on the same

graph since their intervals of applicability are con-

tiguous and interlaced, but do not overlap. Each curve
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corresponds to a different TE mode. Values of (2a/&)

and (Kl — Kz) can be selected and a horizontal line corre-

sponding to the equation

2a 2()y=?rzx (K1– K2)

can be drawn across the family of curves of Fig. 2. The

values of (kl,a) and (kl~a) at the intersections of the

horizontal line and the curves are the roots of (14) and

(15).
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Fig. 2—Graphical technique for obtaining the roots of the conditional
equation for the even and odd order TE modes.

It should be noted from Fig. 2 that the lowest order

even mode (o < kl,a < 7r/2) can exist down to zero fre-

quency. It is the dominant mode of this structure and

will be designated the TEIO mode. Successively higher

modes will be designated TE20, TE3., etc. The mth

mode is designated TEnO. The even modes correspond

to m being an odd integer, and vice versa. The zero

shows that there is no variation of the fields in the y

direction. Eqs. (14) and (15) show that in order for the

TE~o mode to propagate, the following inequality must

be satisfied.

m—1
;>— AK = K1 – KZ. (16)

o 2~~K ‘

The procedure for obtaining the roots of (14) and

(15), as shown in Fig. 2, was repeated for many values

of (2a/&) and AX. The results for the dominant mode

are shown in Fig. 3. The cutoff loci for various higher

order TE modes are shown on this and many succeeding

families of curves. Using the results of Fig. 3 and (10),

values of (kz,a), the transverse distribution parameter

for the outer regions, can be calculated as a function of

(2a/Ao) and AK. The results of this calculation for the

dominant mode are presented in Fig. 4.

The values of (klea) and (kz,a) are sufficient to enable

one to plot the transverse field distributions. Sample

plots of the field configuration, as well as graphs of the

field magnitudes for the dominant mode (TEIO) and the
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Fig. 3—Curves of the inner transverse distribution parameter (kl,a)
of the dominant mode as a function of the normalized slab width
(2a/A~), and the difference of the dielectric constants (AK).
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Fig. 4—Curves of the outer transverse distribution parameter (kz,a)
of the dominant mode as a function of the normalized slab width
(2a/AO), and the difference of the dielectric constants (AK).

lowest orcler odd mode (TEZO), are shown in Fig. 5 and

Fig. 6. The amount of sinusoidal or cosinusoidal varia-

tion in Region 1 is determined by (kl~a), and the rate

of exponential decay in Regions 2 and 3 is determined

by kz,, which is found from (k,ea).

It should be noted from (2) through (7) and Fig. 5

ancl Fig. 6, that none of the field components is a func-

tion of y. Guide wavelength, cutoff wavelength, and field

extent of the TE modes are, therefore, independent of

the distance b between the two conducting planes. This

distance can be varied to suppress the hybrid modes,

which are a function of y, and yet not cause cutoff of

the TE modes. The cutoff criterion for the hybrid modes

has been derived by Moore and Beam.3 Their formula

for determining the critical distance between the con-

ducting planes, bc, which suppresses all hybrid modes, is

re-expressed below.

b. 1

-4

1 + tan2 klea
(17)

X? =2’ 1 + K1 tanz kl,a “
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This relationship is presented graphically in Fig. 7.

Since TEM and TM modes cannot propagate on this

line, only TE modes can exist if b <6,. If, in addition,

the following inequality is satisfied, single mode (T EIO)

operation is assured.
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0 2dAK
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Fig. 5—(a) Cross-sectional view, and (b) top view of the field corr-
Fig. 7—Cutoff condition for the hybrid modes as a function of the

figuration of the dominant mode (TEIO); (c) magnitude of the field
normalized slab width (2a/A. ) and dielectric constant (KI).

components of this mode.
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Fig. 6—(a) Cross-sectional view, and (b) top view of the field con-
figuration of the lowest order antisymmetric mode (TE2.); (c)

magnitude of the field components of this mode.

If a conducting wall is placed at the x = o plane, all

of the even TE modes will be suppressed, but the odd

modes will be unaffected. The dominant mode of the

resulting trough line (half of the original line) will be

the TEzO mode.

The ratio of the cutoff wavelengths of the TEZO and

the TE4,j mode is 3:1. This modified structure, there-

fore, also has an inherent bandwidth advantage over

conventional rectangular waveguide. Although it does

not have the bandwidth capability of the TE1O mode on

the original line, it has the advantages of being a sma[ler

guide and being closed on three sides. The trough line

geometry is appropriate for the design of ferrite devices

employing transverse magnetization.

GUIDE WAVELENGTH

Making use of (8) and the fact that A,= 27r/@, it is

easily shown that

2a

& ()‘x
, even modes. (19)

<= 2a 2
~/() Z-2 ~ KI – (klea)’

The corresponding expression for the odd modes is the

same as (19) except that (kloa) rep~aces (kl,a). For the

case where the outer regions are air or vacuum (K’z = 1),

A,/Ao has been calculated for the TE1. and TEZO modes.
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The results of these calculations are shown in Fig. 8 and

Fig. 9. For small values of (2a/AJ, (X ,~~o) approaches

unity; and for large values of (2a/XO), (A~/&) approaches

1/ <~l. This result is in agreement with the transverse

field distribution picture of this mode, since small values

of (2a/&) correspond to most of the energy being propa-

gated in regions 2 and 3, and large values of (2a/AO) cor-

respond to most of the energy confined in the dielectric

slab. The

shown as

curves.

cutoff loci for higher order TE modes are

dashed curves superimposed on the h,/&

POWER HANDLING CAPABILITIES

Since Ez = H, = O, and the product

function of x, the axial power flow is

~-6s u a

P, = – Real EulHzl*dx
~=o %=0

“m

EUHZ is an even

1

If the proper expressions from (2) through (7) are in-

serted in (20), and the indicated integration is per-

formed, the following formulas for the power flow of the

even and odd modes result:

[

cot ‘lea
l+——

kl,a 1 (21)

[

tan kloa
. l– 1kloa “

(22)

For the dominant mode, the maximum electric field

is located at x = O. As a safety factor, the breakdown

power level pbd will be calculated assuming that the

maximum electric field Eo~, which can exist at x = O, k

the breakdown field of air (despite the fact that a di-

electric material occupies this central region). Eid will be

taken as 15,000 volts per centimeter (a safety factor of

approximately 2) to conform to standard waveguide cal-

culations. From (2c) itis seen that at x = o

If (23) is substituted into (21), the following equation

is obtained for the breakdown power level of the domi-

nant mode.

‘y&iii-o” K,2..IO

~.-.--S2,5

[p&.————K = 3.0——_— —_L—.

————— —————— 4=_4Q

K =6.0.—— —— ——————_,—_

K= 8.0——_— —_L—_
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Fig. 8—Curves of the normalized waveguide wavelength (kO/A.) of
the dominant mode, for the case where the outer regions are air or
vacuum., as a function of the normalized slab width (2a/A. ) and
dielectric constant (K,).

(2a/X ) - (DIMENSIONLESS RATIO)
o

Fig. 9—Curves of the normalized waveguide wavelength (x,/xd) of
the TEz. mode, for the case where the outer regions are air or
vacuum,, as a function of the normalized slab width (2a/X.) and
dielectric constant (KI).

f’bd 9.51 ~10’

[

cot k]ea
—. 1+
ab (2a/&) klea 1

For the case where Ka = 1, this function has been calcu-

lated for many values of (2a/Xo) and K1. The resulting

family of curves is shown in Fig. 10. These curves show

that for very small values of (2a/&), which corresponds

to a very loosely bound wave, pbd becomes very large.

Any practical transmission line will have to be of finite
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Fig. 10—Curves of the power handling capability (P6~ab) as a f unc-
tion of the normalized slab width (2a/&) and dielectric constant
(ICI). These curves are for the dominant mode and the case where
the outer regions are air or vacuum.

extent in the x-direction, and hence there is a practical

lower bound on (2a/&) and an upper bound on the

power handling capability. The improved power han-

dling capabilities of this line are a result of its larger size

and resultant reduced power density. The advantage is

that single mode operation can be assured even with the

large waveguide. The curves of Fig. 10 should provide

an accurate measure of the power handling capacity if

the width of the guide (in the x-direction) is sufficiently

large so that nearly all of the power is propagated in the

region between the two conducting planes.

TRANSMISSION LOSSES

Thus far, it has been assumed that the two parallel

conducting planes had infinite conductivity and that

the dielectric material had zero conductivity. This ideal

line, of course, will have no losses. Practical transmis-

sion line conductors will have large but finite conduc-

tivity and the dielectric will have small but finite con-

ductivity. Approximate attenuation formulas will be de-

rived for these low loss materials. Since these losses are

assumed to be small, separate equations can be derived

for the wall loss and the dielectric loss.

The wall loss per unit length in the z-direction Pw is

given by:

M

Pw = 2:- R,, j-l Ht %x,
—w

(25)

where R,= v’wpO/20-~ = surface resistance of the metal

magnitude of the magnetic field at the walls

conductivity of the metal walls.

The extra factor of two in (25) accounts for the two con-

ducting walls. The attenuation per unit length due to

the wall loss is

(26)

The proper expressions for the magnetic field should be

substituted into (25), and the integration performed. If

the resulting expression and either (21) or (22) are then

substituted in (26), the following equations for the at-

tenuation due to the wall loss for the even and odd TE

modes result.

(27)

For the case of the dominant mode, and for K, = 1, (27)

has been plotted in Fig. 11 for a range of (2a/&)

and many values of .KI. The conductivity of copper

(am = 5.80X 107 mhos per meter) was used in this com-

putation. The curves of Fig. 11 can be used for other

wall materials if the values of attenuation obtained frolm

them are multiplied by the square root of the relative

resistance of the substituted material.

The equation for the dielectric attenuation is derived

for the case where Regions 2 and 3 are air or vacuum,

and hence the dielectric loss all occurs in Region 1. The

dielectric loss per unit length in the z-direction P~ is

given by

where ud = @coK@d = conductivity of the dielectric mate-

rial,

cP~= 10SStangent of the dielectric material.

The attenuation per unit length due to the dielectric

10ss is

f’d
ad=—.

2P.
(30)

The proper expressions for the electric field, (2c) or (SC),

should be inserted in (29) and the integral evaluated to
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Fig. 1l—Attenuation (in nepers per meter) due to the loss in the walls
as a function of the normalized slab width (2a/k.) and dielectric
constant (K1 ). These curves are for the dominant mode and the
case where the outer regions are air or vacuum and the wall
material is copper (u= 5.80 X 107 mhos per meter).

obtain equations for the dielectric power loss of the even

and odd TE modes. The resulting expressions and either

(21) or (22) are substituted into (30) to obtain the fol-

lowing formulas for the attenuation due to the dielectric

loss.

“[kl.a + sin kl,a cos klea

kl.a + cot klea 1
(31)

“[kloa – sin kl~a cos kl~a

1 (32)
kloa – tan kl~a “

Fig. 12 is a plot of ~d& as a function of (2a/&) and

many values of K1 for the dominant mode. These cal-

culated results were plotted for a value of dielectric loss

tangent @~= 0.001. These curves can be used for other

values of ~d if the values of @ obtained are divided by

0.001 and multiplied by the loss tangent of the dielec-

tric used.

DISCUSSION

The parallel plane waveguide partially filled with a

dielectric can support a class of TE modes, whose field

Lo
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Fig. 12—Attenuation (in nepers per meter) due to the dielectric loss
as a function of the normalized slab width (2a/&) and dielectric
constant (KI ). These curves are for the dominant ~mode and the
case where the outer regions are air or vacuum. The loss tangent
(+d) equals ().001.

structure is similar to the TE~o modes of rectangular

waveguide. These TE modes display either even or odd

symmetry about the geometrical plane of symmetry

(x= o). It is not possible to support TEM or TM waves

on this structure. It has been previously shown that

hybrid modes can also propagate on this line. 1–3 A

sufficiently small, yet convenient, value for the distance

between the conducting planes can be found which will

suppress the hybrid modes and not affect the TE modes.

The dominant mode of this line (TEIO) has no cutoff

frequency, and hence it is inherently capable of very

wide bandwidth operation. For a loosely bound wave,

the losses are comparable to those of conventional rec-

tangular waveguide, and the power handling capacity is

an order of magnitude greater. In order to obtain the

advantages of a loosely bound wave on this line, the

structure must be substantially larger than rectangular

waveguide. This line may, therefore, offer its greatest

utility at millimeter wavelengths, where its size is still

convenient. The availability of low loss, low dielectric

constant materials allows the use of a reasonably wide

dielectric center strip. The dielectric strip will, therefore,

be mechanically self-supporting, while retaining the ad-

vantages of a loosely bound wave structure even at

millimeter wavelengths. In the case of the dielectric

loaded trough guide propagating the TEzO mode, thin

layers of higher dielectric constant materials can be sup-

ported alongside the vertical conducting wall.
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